Pharmaceutical Technology - Suplemento Líquidos 2023
47 SUPLEMENTO LIQUIDOS 2023 Pharmaceutical Techno logy 47 no causan toxicidad para el ser humano y son amigables con el medio ambiente. La tecnología de microencapsulación se utiliza para producir estos pesticidas naturales protegiendo a los AEs de la degradación 1 . Industria farmacéutica La industria farmacéutica ha tenido un creciente interés en estos compuestos, motivado por la diversidad de efectos bio - lógicos que presentan. A partir de los AEs, es posible la obtención de principios acti- vos para aplicación clínica. Algunas de las moléculas activas derivadas de los mismos, incluyen terpenos como el eugenol, mentol, linalol, carvacrol, timol, las cuales manifies - tanmúltiples actividades beneficiosas 22,23,24 . Además, en esta área, los AEs se emplean como excipientes y aromatizantes en varias formas farmacéuticas con el fin de mejorar sus características organolépticas 1,25 Bibliografía 1. Sousa, V. I., Parente, J. F., Marques, J. F., Forte, M. A., & Tavares, C. J. (2022). Microencapsulation of essential oils: A review. Polymers, 14(9), 1730. https://doi.org/10.3390/polym14091730 2. Pandey, A.K.; Kumar, P.; Saxena, M.J.; Maurya, P. Distribution of aromatic plants in the world and their properties. In Feed Additives; Florou-Paneri, P., Christaki, E., Giannenas, I., Eds.; Academic Press: Cambridge, MA, USA, 2020; Chapter 6; pp. 89–114. 3. Sosa, L., Espinoza, L. C., Valarezo, E., Bozal, N., Calpena, A., Fábrega, M.-J., Baldomà, L., Rincón, M., &Mallandrich, M. (2023).Therapeutic applications of essential oils from native and cultivated Ecuadorian plants: Cutaneous candidiasis and dermal anti-inflammatory activity. Molecules, 28(15), 5903. https://doi.org/10.3390/molecules28155903 4. Matiz Melo, G. E., Fuentes López, K., & León Méndez, G. (2015). Microen- capsulación de aceite esencial de tomillo (Thymus vulgaris) en matrices poliméricas de almidón de ñame (Dioscorea rotundata) modificado. Revista Colombiana de Ciencias Químico Farmacéuticas, 44(2), 189–207. https://doi.org/10.15446/rcciquifa.v44n2.56293 5. Botrel, D. A., Fernandes, R. V. de B., & Borges, S. V. (2015). Microencapsula- tion of essential oils using spray drying technology. InMicroencapsulation and Microspheres for Food Applications (pp. 235–251) .http://dx.doi. org/10.1016/b978-0-12-800350-3.00013-3 6. Fadel, H. H. M., El-Ghorab, A. H., Hussein, A. M. S., El-Massry, K. F., Lotfy, S. N., Sayed Ahmed, M. Y., & Soliman, T. N. (2020). Correlation between chemical composition and radical scavenging activity of 10 commercial essential oils: Impact of microencapsulation on functional properties of essential oils. Arabian Journal of Chemistry, 13(8), 6815–6827. https:// doi.org/10.1016/j.arabjc.2020.06.034 7. Brignone, S. G., Ravetti, S., & Palma, S. D. (2020). Microencapsulación/ recubrimiento de sistemas particulados de uso farmacéutico. Pharma- ceutical Technology Sudamérica, 165, 34-43. https://www.edicionesvr. com/descargas/ed165/56/index.html 8. Araújo, J. S. F., de Souza, E. L., Oliveira, J. R., Gomes, A. C. A., Kotzebue, L. R. V., da Silva Agostini, D. L., de Oliveira, D. L. V., Mazzetto, S. E., da Silva, A. L., & Cavalcanti, M. T. (2020). Microencapsulation of sweet orange essential oil (Citrus aurantium var. dulcis) by liophylization using maltodextrin and maltodextrin/gelatinmixtures: Preparation, characterization, antimicrobial and antioxidant activities. International journal of biological macromole- cules, 143, 991–999. https://doi.org/10.1016/j.ijbiomac.2019.09.160 9. Benavides Valenzuela, S. F. (n.d.). Desarrollo y caracterización de mi- croesferas de alginato cargadas con aceite esencial de tomillo [Pontificia Universidad Católica de Chile]. Retrieved June 12, 2023, fromhttp://dx.doi . org/10.7764/tesisuc/ing/21450 10. Dima, C., Cotârlet, M., Alexe, P., & Dima, S. (2014). Microencapsulation of essential oil of pimento [Pimenta dioica (L) Merr.] by chitosan/k- carrageenan complex coacervation method. Innovative Food Science & Emerging Technologies, 22, 203–211. https://doi.org/10.1016/j. ifset.2013.12.020 11. Figueiredo, J. de A., Silva, C. R. de P., Souza Oliveira, M. F., Norcino, L. B., Campelo, P. H., Botrel, D. A., & Borges, S. V. (2022). Microencapsulation by spray chilling in the food industry: Opportunities, challenges, and innovations. Trends in Food Science & amp; Technology, 120, 274–287. https://doi.org/10.1016/j.tifs.2021.12.026 12. Botrel, D. A., Fernandes, R. V. de B., & Borges, S. V. (2015). Microencapsula- tion of essential oils using spray drying technology. InMicroencapsulation and Microspheres for Food Applications (pp. 235–251). http://dx.doi . org/10.1016/b978-0-12-800350-3.00013-3 13. Bakry, A. M., Abbas, S., Ali, B., Majeed, H., Abouelwafa, M. Y., Mousa, A., & Liang, L. (2015). Microencapsulation of Oils: A Comprehensive Review of Benefits, Techniques, and Applications. Comprehensive Reviews in Food Science and Food Safety, 15(1), 143–182. doi:10.1111/1541-4337.12179 14. Zuidam, N. J., & Nedovic, V. (2009). Encapsulation technologies for active food ingredients and food processing. Springer Science & BusinessMedia. 15. Mehran, M., Masoum, S., & Memarzadeh, M. (2020). Microencapsulation of Mentha spicata essential oil by spray drying: Optimization, characteriza- tion, release kinetics of essential oil frommicrocapsules in food models. Industrial Crops and Products, 154, 112694. https://doi.org/10.1016/j. indcrop.2020.112694 16. Martins, I. M., Barreiro, M. F., Coelho, M., & Rodrigues, A. E. (2014). Mi- croencapsulation of essential oils with biodegradable polymeric carriers for cosmetic applications. Chemical Engineering Journal, 245, 191–200. https://doi.org/10.1016/j.cej.2014.02.024 17. Benavides, S., Cortés, P., Parada, J., & Franco, W. (2016). Development of alginate microspheres containing thyme essential oil using ionic gelation. Food Chemistry, 204, 77–83. https://doi.org/10.1016/j.food- chem.2016.02.104 18. Sundar, S. K., & Parikh, J. K. (2023). Advances and trends in encapsulation of essential oils. International Journal of Pharmaceutics, 635, 122668. https://doi.org/10.1016/j.ijpharm.2023.122668 19. Carvalho, I. T., Estevinho, B. N., & Santos, L. (2015). Application of microen- capsulated essential oils in cosmetic and personal healthcare products - A review. International Journal of Cosmetic Science, 38(2), 109–119. https://doi.org/10.1111/ics.12232 20. Sharmeen, J., Mahomoodally, F., Zengin, G., & Maggi, F. (2021). Essential oils as natural sources of fragrance compounds for cosmetics and cosmeceuticals. Molecules, 26(3), 666. https://doi.org/10.3390/mole- cules26030666 21. Wang, W., Zhang, W., Li, L., Deng, W., Liu, M., & Hu, J. (2023). Biodegra- dable starch-based packaging films incorporated with polyurethane- encapsulated essential-oil microcapsules for sustained food preservation. International Journal of Biological Macromolecules, 235, 123889. https:// doi.org/10.1016/j.ijbiomac.2023.123889 22. Żyżelewicz, D., Kulbat-Warycha, K., Oracz, J., & Żyżelewicz, K. (2020). Polyphenols and other bioactive compounds of sideritis plants and their potential biological activity. Molecules, 25(16), 3763. https://doi. org/10.3390/molecules25163763 23. Piasecki, B., Korona-Głowniak, I., Kiełtyka-Dadasiewicz, A., & Ludwiczuk, A. (2023). Composition and Anti-Helicobacter pylori Properties of Essential Oils Obtained from Selected Mentha Cultivars. Molecules, 28(15), 5690. https://doi.org/10.3390/molecules28155690 24. Taibi, M., Elbouzidi, A., Ouahhoud, S., Loukili, E. H., Ou-Yahya, D., Ouahabi, S., Alqahtani, A. S., Noman, O. M., Addi, M., Bellaouchi, R., Asehraou, A., Saalaoui, E., Guerrouj, B., & Chaabane, K. (2023). Evaluation of Antioxidant Activity, Cytotoxicity, and Genotoxicity of Ptychotis verticillata Essential Oil: Towards Novel Breast Cancer Therapeutics. Life, 13(7), 1586. https:// doi.org/10.3390/life13071586 25. Luegon, M. T. L. (2004). Los aceites esenciales. Aplicaciones farmacoló- gicas, cosméticas y alimentarias. Offarm, 23(7), 88–91.
Made with FlippingBook
RkJQdWJsaXNoZXIy NzE4NDM5